
G
ro
u
n
d
V
eh

ic
le

R
o
b
o
ti
cs

G
V
S
C
-G

V
R

F
Y
2
0

U.S. Army CCDC Ground Vehicle

Systems Center

ROS-M

Evaluation of ROS2 Eloquent

Matthew Schickler March 2020

Distribution A: Approved for public release: distribution unlimited. (OPSEC# 3927)

UNCLASSIFIED

THIS PAGE IS INTENTIONALLY LEFT BLANK

ROS-M GVSC-GVR FY20

March 2020

Evaluation of ROS2 Eloquent

Matthew Schickler

FLIR Unmanned Ground Systems
19 Alpha Road
Chelmsford, MA 01824

Distribution A: Approved for public release: distribution unlimited. (OPSEC# 3927)

Prepared for U.S. Army CCDC GVSC

Warren, MI 48397-5000

UNCLASSIFIED

GVSC-GVR FY20 ii

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not nec-
essarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product
endorsement purposes.

ii

UNCLASSIFIED

GVSC-GVR FY20 iii

Executive Summary

The Robot Operating System (ROS) has proven to be an invaluable frame-

work and package repository for the development of robot software appli-

cations. It is used heavily by the research community and there is a strong

desire to also use it to produce finished products for industry. Despite its

success, there are fundamental weaknesses in its architecture that have been

a barrier to wide-spread adoption for production. The latest version of ROS,

called ROS2, is a clean sheet design that aims to achieve significant improve-

ments in reliability and security over the original ROS. These improvements

are of great interest to the United States Army Combat Capabilities Devel-

opment Command (CCDC) Ground Vehicle Systems Center (GVSC) and

members of the National Advanced Mobility Consortium (NAMC) because

these features are necessary to achieve the requirements of future unmanned

ground vehicles (UGV). In the interest of moving the state of the art for-

ward on a common, shared software platform, NAMC is examining ways to

expedite the adoption of ROS2 (and more specifically, the military version

of ROS, called ROS-M) as the de facto standard for UGV software. This re-

port contains a survey of ROS2 features and identifies gaps and remaining

work needed to bring ROS2 to parity with the existing ROS1 feature set.

iii

UNCLASSIFIED

GVSC-GVR FY20 iv

Table of Contents
1 Overview .. 1

2 ROS2 Survey ... 3

2.1 Build System .. 3

2.2 Core ... 3

2.2.1 Nodes.. 3

2.2.2 Communication.. 4

2.2.3 Middleware ... 5

2.2.4 Components.. 8

2.2.5 Launch .. 8

2.2.6 Parameters ... 9

2.2.7 Plugins ... 10

2.2.8 Logging .. 10

2.2.9 Transforms .. 12

2.2.10 Bonding .. 12

2.3 Algorithms ... 12

2.3.1 Diagnostics .. 12

2.3.2 Controllers ... 13

2.3.3 State Estimation ... 13

2.3.4 SLAM .. 13

2.3.5 Navigation ... 14

2.3.6 Perception ... 15

2.3.7 Manipulation .. 16

2.4 Drivers .. 16

2.4.1 CAN .. 17

2.4.2 GPS... 17

2.4.3 IMU... 18

2.4.4 LiDAR .. 18

2.4.5 Cameras.. 19

2.5 Tools .. 20

2.5.1 Command Line ... 20

2.5.2 RQt ... 20

2.5.3 RViz .. 23

2.5.4 Gazebo ... 23

3 Migration ... 24

3.1 Porting from ROS1 to ROS2 ... 24

3.2 Techniques ... 24

3.2.1 ROS1 API Shim .. 25

iv

UNCLASSIFIED

GVSC-GVR FY20 v

3.2.2 Automated Tools... 25

3.2.3 ROS1 Bridge .. 25

4 Training ... 26

5 Conclusion .. 27

5.1 Feature Gaps .. 27

5.2 Quality .. 28

5.3 Compliance... 28

5.4 Training... 28

5.5 Recommendations .. 29

References .. 31

v

UNCLASSIFIED

GVSC-GVR FY20 vi

vi

UNCLASSIFIED

GVSC-GVR FY20 1

1 Overview

ROS1 has been under active development by an enthusiastic community of

robotics researchers and software developers for over 12 years and provides

an extremely diverse and rich set of core and auxiliary features. ROS2 is a

ground-up redesign of ROS1 that was announced in 2014. Starting in 2017,

four official distributions have been delivered with each release incremen-

tally adding back capabilities originally offered by ROS1. As of the Eloquent

distribution released in November 2019, most of the remaining feature gaps

between ROS1 and ROS2 have been filled. The next distribution, Foxy, will

be released in May 2020 and is planned for long-term support.

As of the end of 2019, there are almost 2500 separate packages available in

ROS1 Melodic. It is therefore not the intention of this paper to provide a

complete, detailed analysis of how the current ROS1 and ROS2 distributions

differ. Instead, we focus on a survey of the core ROS2 infrastructure and a

subset of community developed packages that are of particular interest to

those building UGVs.

In the survey, the software features of ROS are broken down into the follow-

ing major categories:

• Build System

• Core

• Algorithms

• Device Drivers

• Tools

Most aspects of the build system, core, and tools are of interest to any ROS

developer, including those developing for ROS-M projects.

Within the algorithms category, ROS-M developers are expected to have

particular interest in at least some of the following sub-categories:

1

UNCLASSIFIED

GVSC-GVR FY20 2

• Diagnostics

• Controllers

• State Estimation

• Simultaneous Localization and Mapping (SLAM)

• Navigation

• Perception

• Manipulation

Within the device drivers category, ROS-M developers are expected to have

particular interest in at least some of the following sub-categories:

• CAN

• GPS

• IMU

• LiDAR

• Cameras

After presenting a survey of ROS2 features, this paper identifies remaining

gaps and areas of future focus that will facilitate faster migration to ROS2.

2

UNCLASSIFIED

GVSC-GVR FY20 3

2 ROS2 Survey

This section presents a survey of the current ROS2 feature set as of the

November 2019 release of Eloquent and compares and contrasts with ROS1

Melodic.

2.1 Build System

ROS1 uses a package called catkin to extend the built-in capabilities of CMake.

The catkin tool provides a comprehensive mechanism for building ROS1

packages and managing their dependencies. ROS2 continues to use CMake

at its core, but introduces a new package called ament which is a major re-

design and evolution of catkin. In addition, a higher level tool called col-

con has been introduced that has the ability to build both catkin and ament

packages. Colcon is now the preferred method for performing a ROS2 build.

In ament, the contents of the CMakeLists.txt and package.xml files are changed

significantly. Also, there is no longer a “devel” directory at the top level of

the workspace. Build products such as libraries and executables are out-

put into a package-specific subdirectory under the “build” directory. This

arrangement aligns more closely with what is expected from a standard

CMake build. To support quick development iterations there is an option

called –symlink-install, which creates symbolic links to installed files instead

of copies. This allows, for example, changes to a launch file in the source di-

rectory to take effect immediately without requiring a re-build.

From a developer’s perspective, ament offers the same basic functionality

as catkin. Many of the advantages of ament over catkin are related to its

underlying design.

2.2 Core

The ROS core functions consist of the middleware, services, utilities, and

programming APIs that make up the infrastructure used by all ROS pack-

ages.

3

UNCLASSIFIED

GVSC-GVR FY20 4

2.2.1 Nodes

In ROS1, a node was more of a concept than a programmatic entity. A ROS1

node was simply an executable that used ROS topics or services to commu-

nicate with other ROS1 nodes. In ROS2, a ROS node is implemented by

deriving from a Node base class. There is also no assumption that there is a

one-to-one mapping between a node and an executable. A single executable

can contain multiple nodes and the activities of these nodes are orchestrated

through objects called executors. Executors can be single threaded or multi-

threaded.

An additional benefit of deriving from the Node base class is that it pro-

vides a standard design framework from within which the rest of the code

operates. The main function of your process simply instantiates your node

objects and an optional executor and then calls spin. The operation of your

node object is then completely event driven through timer, subscriber, and

service callbacks.

In addition to supporting the same level of functionality as ROS1 nodes,

ROS2 also supports the concept of a managed lifecycle for a node. This

managed lifecycle consists of a set of well-known states and transitions. When

a transition is requested, callbacks are made in order to give the node a

chance to take appropriate actions. For example, a node might read its con-

figuration parameters and allocate resources appropriately when transition-

ing from the “Unconfigured” to the “Inactive” state. The lifecycle is fully in-

tegrated with command line tools and the ROS2 launch system. This makes

it possible to manually request state transitions or to sequence state transi-

tions based on launch events.

2.2.2 Communication

ROS1 nodes use topics, services, and actions for communication. Topics

are an asynchronous, many-to-many message passing mechanism based on

the publish/subscribe pattern. The association between a publisher (writer

of data) and a subscriber (reader of data) is created indirectly through a

named topic. Publishers typically write to a topic periodically, but may also

write new data immediately as changes occur. In addition, data for a topic

may be “latched” so that new subscribers can always read the data that was

most recently written.

4

UNCLASSIFIED

GVSC-GVR FY20 5

Services are a synchronous mechanism whereby one node sends a request

and then waits for another node to produce a response.

Actions are like services but the transaction includes a set of intermediate

feedback that can report on the progress of a long-running process that was

initiated by the request. An action client sends a goal request to initiate an

action and then has the option of either blocking and waiting for a response

or not blocking and registering callbacks that will asynchronously handle the

feedback and result responses.

ROS2 supports all of the communication mechanisms supported by ROS1.

In addition, actions, which were an add-on package in ROS1 are now a part

of the core ROS2 API. The interfaces for managing all three types of com-

munication are included in the Node base class.

It should be mentioned that there is a difference in how services are imple-

mented in ROS1 and ROS2. In ROS1, a service client blocks until it times

out or receives a response. In ROS2, a service client is always asynchronous,

meaning that the response from the server must be handled in a callback

function. This is a good design choice since a blocking service call would not

be real-time safe. Note that while there is no API for a synchronous client,

it is still possible, when appropriate, to implement it using a combination of

an asynchronous client and a spinner.

2.2.3 Middleware

ROS1 uses a custom transport protocol and a central master process to co-

ordinate the setup of communication channels between publishers and sub-

scribers. ROS2 is based on Distributed Data Services (DDS) middleware and

does not require a central master. It should be noted that a fully distributed

solution does not come without drawbacks. In ROS2, endpoint discovery

must occur every time a process is executed which incurs a significant de-

lay. This problem is mitigated through the use of an optional ROS Daemon

process that caches discovery information for short-lived executables such as

command line tools.

The DDS implementation used by ROS2 also offers important security and

quality of service features. Some of these features are not supported by ROS1.

5

UNCLASSIFIED

GVSC-GVR FY20 6

ROS2 currently benefits from the following DDS security capabilities that

are not supported in ROS1:

• Privacy: Strong symmetric key encryption (e.g. AES) of messages

• Authentication: Private key cryptography and X.509 certificates

• Authorization: Read/write permissions on a per-node, per-topic basis

• Authorization configuration files are write-protected using cryptographic

signature

ROS2 currently exposes the following options for implementing quality of

service:

• Best effort or reliable transport. This is similar to the choice of ROSUDP

or ROSTCP in ROS1 but in ROS2 this choice can be made on a per-

topic basis. Also, unlike ROSTCP, reliable DDS transport supports mul-

ticast for increased network efficiency.

• Transmit and receive history settings. These are similar to setting the

queue depth in ROS1.

• Volatile or “transient local” durability. The latter attempts to send “his-

torical” messages to newly started subscribers and behaves like a latched

topic in ROS1 if the topic history depth is also set to 1.

• Deadlines. Monitors the timeliness of periodic messages and notifies if

updates are not sent or received within the expected timeframe. This is a

new capability in ROS2.

• Lifespan. Prevents delivery of stale data by throwing out messages that

have expired timestamps. This is a new capability in ROS2.

• Liveliness. Monitors the liveliness of a publisher and notifies if liveliness

is lost. Similar monitoring of liveliness is accomplished in ROS1 using

bonds (see section 2.2.9).

Note that features that would be helpful for supporting determinism are not

yet exposed through the ROS2 API. These features include:

6

UNCLASSIFIED

GVSC-GVR FY20 7

• Prioritization: higher priority messages should be serviced from queues

before lower priority messages and when a queue is full, lower priority

messages should be dropped before higher priority messages

• Time Sensitivity: real-time applications should have the ability to iden-

tify the age of messages and use that information to determine a process-

ing order that can be used to guarantee deadlines

Some further discussion on proposed enhancements to the ROS2 Middleware

for supporting deterministic execution can be found at [1].

Because of the open nature and standardization of DDS, system developers

can choose from a range of free DDS implementations or use a licensed, com-

mercial implementation. Table 1 lists the current DDS implementations that

may be used with ROS2.

Table 1. ROS2 middleware options.

Product License Notes

eProsima Fast RTPS Apache2 ROS2 default middleware

ADLINK Opensplice Apache2 support will be discontinued in favor of Cyclone [2]

RTI Connext Commercial Limited to v5.3.1 [3], must be licensed

Eclipse Cyclone EPL 2.0 Missing security and QoS modes

The default DDS implementation for ROS2 is Fast RTPS from eProsima.

The company has published test results in [4] showing their implementation

has the lowest latency and highest throughput of the non-commercial op-

tions.

eProsima announced in February 2019 that Apex.AI, a company dedicated

to using ROS to build a self-driving car, had selected Fast RTPS for one of

its two backbone middlewares [5]. On the other hand, Rover Robotics pub-

lished guidance in July 2019 on choosing a DDS implementation based on

their direct experience with the Fast RTPS software. After having difficul-

ties with discovery in Fast RTPS, the authors recommended using Open-

splice [6].

A performance analysis comparing OpenSplice, RTI Connext, and the ROS1

middleware was written in 2016 [7]. At that time, the authors found that

7

UNCLASSIFIED

GVSC-GVR FY20 8

DDS latency was about the same, or in some cases worse, than latency in

ROS1. An updated version of this study including Fast RTPS, OpenSplice,

and Connext would be very helpful to understanding the current middleware

performance characteristics of ROS2.

A security analysis of ROS2 with Fast RTPS published in Sep 2018 con-

cluded that “After analyzing the default DDS middleware with ROS 2 we

found that it did not conform to the security specification by OMG [the Ob-

ject Management Group, the consortium responsible for the DDS specifica-

tion]. This can cause a [Cyber-Physical System] to be left in vulnerable sit-

uations”. Also, due to rapid development of ROS2, they note “Continuously

monitoring the implementation of ROS 2 to check violations to the relevant

security specifications and logical errors, which can be linked to potential

vulnerabilities is greatly beneficial to enhance the security of ROS 2” [8].

2.2.4 Components

ROS1 includes an add-on feature that allows developers to restructure their

nodes into objects, called nodelets, that can be dynamically loaded and run

within a single process. The main advantage of this technique is highly effi-

cient zero-copy message passing between nodelets in the same process. This

same capability is implemented in ROS2 through Components, which are

essentially dynamically loadable ROS2 nodes. Since ROS2 already funda-

mentally supports running multiple nodes in the same process and zero-copy

message passing occurs between those nodes using DDS, equivalent function-

ality to nodelets is achieved. An interesting and potentially useful charac-

teristic of ROS2 components is that they can be dynamically composed into

processes using command line tools. Since it only requires a few extra lines

of code in your package, it is recommended that all ROS2 nodes are imple-

mented as components for maximum flexibility [9].

2.2.5 Launch

ROS1 uses XML files to describe which nodes to run and how they should

be configured. Launch files can include other launch files so that the recipes

for launching nodes can be reused and customized for different situations

or platforms. Configuration parameters can be specified as children of the

XML tags that specify the execution of a node or they may be loaded out of

YAML files. The XML also allows for some limited decision making. For ex-

ample, “if” and “unless” attributes can be added to the XML tags to control

8

UNCLASSIFIED

GVSC-GVR FY20 9

whether or not the tag should have an effect based on the value of a launch

argument. While easy to learn and to use, the launch XML has a few draw-

backs:

• The order in which nodes are launched cannot be controlled

• Nodes tend to all be launched at once without regard to sequencing or

dependencies

• Decisions more complicated than checking the value of a single launch

argument are cumbersome or potentially not even possible

ROS2 introduces Python-based launch files that increase flexibility and al-

low for the sequencing of launch steps. The python launch API implements

launch actions based on ROS2 node life cycle events. For example, a life cy-

cle node entering the active state may trigger a launch action that executes

additional nodes or transitions another node to a new state.

An XML launch format has also recently been released. It is based on the

underlying Python launch APIs and is similar to but not exactly the same

as the ROS1 XML format. A complete guide for migrating ROS1 XML to

ROS2 XML is available at [10].

The following ROS1 XML features are not yet supported in ROS2:

• Respawn and respawn delay attributes in the node tag. There is an open

enhancement request for this capability [11].

• Machine attribute and tag. These are missing because the remote launch

feature is not yet implemented.

2.2.6 Parameters

ROS1 uses a global parameter server that maintains a single tree of parame-

ters for the entire system. The drawback of this approach is that, in general,

nothing has ownership of a parameter.

ROS2 uses local parameters that are directly associated with a node. The

lifetime of a parameter is implicitly tied to the node’s lifetime. Also, the

9

UNCLASSIFIED

GVSC-GVR FY20 10

node has control over how the parameter can be set. This allows nodes to

provide parameter constraint information to clients and validate requests

to modify parameters. Through the use of callbacks in a ROS2 node, all of

the dynamic reconfigure functionality provided by ROS1 in an add-on pack-

age is now directly supported by the ROS2 client library. Parameters can be

dynamically set through the ROS2 command line tools or through the RQt

GUI.

Transitioning from an architecture that uses a global parameter server to

one that uses local parameters owned by individual nodes is a significant

change that will likely complicate the porting of some existing ROS1 code.

In cases where a group of nodes must share parameters, it is recommended

that a specific node with the responsibility of managing that cohesive set

of parameters is added to the design. While it is possible to add a generic,

global parameter server node that would completely replace the ROS1 pa-

rameter server [12], this approach violates the principle of least privilege

(POLP) [13] and weakens the overall security of the system [14].

2.2.7 Plugins

Plugins allow applications to be extended without the need for recompila-

tion. Specific use of plugins in both ROS1 and ROS2 include:

• planning algorithms in the navigation stack

• data display types in the RViz visualization tool

• kinematics, collision detection, and planning algorithms in MoveIt!

The ROS1 pluginlib package has been ported to ROS2 and is available at

[15].

2.2.8 Logging

Both ROS1 and ROS2 provide the ability to write log messages to the con-

sole. Each message is assigned one of the following severities which are used

to categorize and filter messages by level:

• DEBUG - low-level tracing for development or troubleshooting

10

UNCLASSIFIED

GVSC-GVR FY20 11

• INFO - normal operation

• WARN - indicates there might be a problem

• ERROR - a serious, but recoverable problem has occurred

• FATAL - something unrecoverable has occurred

The following ROS1 logging features are available in ROS2:

• Logs are automatically written to files on a per-node basis

• Use of C-style format string or C++ IO stream for messages

• Throttling to limit the frequency of a particular message

• Log only when a particular condition is true (called “expressions” in

ROS2)

• Log once

The following logging features have been added in ROS2:

• Log based on the boolean result of a general function

• Skip first log message

The following ROS1 logging features are missing in ROS2:

• Throttle with an initial delay.

• Filter based on formatted log message contents.

• A generalized mechanism for changing the level of individual loggers at

runtime. This is a powerful debugging tool that gives developers fine-

grained control over which logs they see while troubleshooting an issue.

Currently specific code needs to be added to each node in order to con-

trol its logger level.

11

UNCLASSIFIED

GVSC-GVR FY20 12

2.2.9 Transforms

ROS1 includes packages containing support for calculating the forward kine-

matics of a robot model and converting between its coordinate frames. These

packages have been carried forward to ROS2 [16].

2.2.10 Bonding

Bonding allows a pair of processes to monitor each other’s liveliness. The

ROS1 bond package has been ported to ROS2 and is available at [17].

2.3 Algorithms

ROS contains many support packages contributed by the community that

implement algorithms used in the field of robotics.

2.3.1 Diagnostics

Table 2 contains packages that support system diagnostics in ROS2.

Table 2. Diagnostics packages.

Package Description Eloquent Status Repo

diagnostic updater tools for easily updating

the diagnostics topic

Debian exists 1 [18]

ROS2 currently does not support:

• diagnostic aggregator: a node that uses analyzer plugins to process and

categorize diagnostics data

• rqt robot monitor: a plug-in that allows viewing of diagnostic status

through the RQt GUI

Both of these missing ROS1 features are useful for making sense of the diag-

nostic data being published by the updated.

1this means that this package can be installed directly from the ROS2 package reposi-
tory at http://packages.ros.org/ros2/ubuntu

12

UNCLASSIFIED

GVSC-GVR FY20 13

2.3.2 Controllers

ROS1 includes packages that implement a wide range of controllers for robot

hardware [19] [20]. These packages have not yet been ported to ROS2 but

as of January 2020 there was interest by Amazon and PAL Robotics to form

a working group with the goal of doing a conversion [2]. Table 3 contains

a list of new packages that are a redesign of a subset of the ROS1 controls

packages aimed at fully leveraging ROS2 concepts.

Table 3. Controller packages.

Package Description Eloquent Status Repo

ros control controller manager, robot

hardware interface

Build from source [21]

ros controller useful controllers such as

joint trajectory, etc.

Build from source [22]

Code for performing differential drive and ackermann vehicle control are

missing from the new ROS2 controls packages. Since ground vehicles typ-

ically employ one of these two drive schemes, it would be useful for these

features to be added.

2.3.3 State Estimation

State estimation uses a combination of sensors such as GPS, IMU, and en-

coders to determine the pose of a robot.

Table 4 contains packages that support state estimation in ROS2.

Table 4. State Estimation packages.

Package Description Eloquent Status Repo

robot localization non-linear state estimation

through sensor fusion

Build from source [23]

2.3.4 SLAM

Simultaneous Localization and Mapping (SLAM) is a technique for mapping

an environment and determining the robot’s pose within that environment.

Table 5 contains packages that support SLAM in ROS2.

13

UNCLASSIFIED

GVSC-GVR FY20 14

Table 5. SLAM packages.

Package Description Eloquent Status Repo

slam toolbox Lifelong mapping and

localization

Build from source, will be

default SLAM for ROS2

[24]

cartographer Cartographer SLAM Debian exists [25]

Although Cartographer is a very capable SLAM implementation it has not

been chosen by the ROS2 technical steering committee as the default ROS2

SLAM because it is no longer actively supported by Google. That said, Car-

tographer will likely still be of interest to projects that require 3D SLAM

until an alternative has been identified.

There has also been discussion at with regard to porting the newer LaMa

SLAM algorithm to ROS2 [26].

2.3.5 Navigation

Navigation involves planning collision-free paths through an environment

(global planning) and controlling a robot’s motion to achieve the waypoints

along that path (local planning). The default navigation stack in ROS1 was

called move base. This has been replaced in ROS2 by navigation2. Major

features of this new navigation stack include:

• Task coordination using behavior trees

• bt navigator replaces move base at top level

• Cost map and planner implementations are still plugins

• Planners and recovery behaviors are executed using ROS2 actions

• All nodes use the ROS2 node life cycle model

• Generalized world model framework for providing a more flexible set of

cost map outputs

• Global planning using Dijkstra or A*

• Local planning using the Dynamic Window Approach algorithm (DWA)

• Adaptive Monte Carlo Localization (AMCL)

14

UNCLASSIFIED

GVSC-GVR FY20 15

A recent real-world experiment demonstrated that a robot controlled by the

Navigation2 software could move autonomously through a crowded space for

an extended period of time while avoiding collisions [27]. One important lim-

itation that was identified during the experiment was that ”the A* planner

used does not create feasible paths for non-circular non-holonomic robots.”

This limitation is planned to be addressed in a future extension of the soft-

ware.

As a separate project, a port of the Timed Elastic Band (TEB) local planner

plugin is in progress.

Table 6 contains packages that support navigation in ROS2.

Table 6. Navigation packages.

Package Description Eloquent Status Repo

navigation2 Global and local planner

for navigation

Build from source [28]

teb local planner Timed Elastic Band Local

Planner

Build from source [29]

2.3.6 Perception

Perception involves the extraction of information about an environment from

raw sensor data.

Table 7 contains packages that support perception in ROS2.

15

UNCLASSIFIED

GVSC-GVR FY20 16

Table 7. Perception packages.

Package Description Eloquent Status Repo

image pipeline Camera calibration, dis-

tortion removal, stereo,

depth

Build from source [30]

perception pcl Data structures and algo-

rithms for working with

point clouds

Debian exists [31]

vision opencv Data structures and al-

gorithms for computer

vision

Debian exists [32]

tensorflow ROS nodes for using ten-

sorflow machine learning

Python scripts in repo [33]

object analytics Object tracking and 3D

localization

Build from source [34]

2.3.7 Manipulation

Manipulation involves the planning of collision-free paths to place an articu-

lated arm or end effector in a particular pose or to grasp an object.

Table 8 contains packages that support manipulation in ROS2.

Table 8. Manipulation packages.

Package Description Eloquent Status Repo

moveit2 Joint motion planning Build from source, beta

version

[35]

grasp Grasp detection and plan-

ning

Build from source [36]

2.4 Drivers

The ROS1 community has contributed a large number of packages to sup-

port various hardware devices used in robots. For example, according to [37]

there are well over 100 different supported sensors. A full survey of ROS1

drivers and whether or not they have been ported to ROS2 is beyond the

16

UNCLASSIFIED

GVSC-GVR FY20 17

scope of this report. Instead, focus is placed on major hardware categories

and specific devices that are most likely to be used in ROS-M projects.

2.4.1 CAN

Controller Area Network (CAN) is a robust communication bus technology

used for motor control and automotive drive-by-wire (DBW) systems.

Table 9 contains packages that support the CAN bus in ROS2.

Table 9. CAN packages.

Package Description Eloquent Status Repo

ros canopen speak to devices using the

CANopen protocol

Build from source [38]

Note that Dataspeed Inc. provides ROS DBW support for the Lincoln MKZ

as well as (Fiat Chrysler) FCA platforms at [39]. This support does not ap-

pear to be ported to ROS2 at this time.

2.4.2 GPS

GPS allows a robot to determine its global position relative to an earth

frame.

Table 10 contains packages that support GPS devices in ROS2.

Table 10. GPS packages.

Package Description Eloquent Status Repo

novatel gps driver support for NavAtel GPS /

GNSS receivers

Build from source [40]

gps tools convert raw GPS data into

ROS odometry

Build from source [41]

Drivers for GPS devices from Microstrain (GX4/GX5) [42] and ublox [43]

have not yet been ported to ROS2.

The gps tools package is ported from the ROS1 gps common package.

17

UNCLASSIFIED

GVSC-GVR FY20 18

2.4.3 IMU

Inertial Measurement Units (IMU) measure acceleration and orientation of

the device. They typically also output a gravity vector and a magnetic com-

pass heading.

Table 11 contains IMU device drivers that were supported in ROS1 and have

been ported to ROS2.

Table 11. IMU packages supported in ROS2.

Device Eloquent Status Repo

MicroStrain 3DM-GX2 Build from source [44]

PhidgetSpatial 3/3/3 Debian exists [45]

ROS1 includes drivers for the MicroStrain GX4/GX5 [42], Bosch BNO055

[46], and the DSP-3000 from KVH [47]. These drivers have not yet been

ported to ROS2.

ROS1 also includes some IMU support packages like imu filter madgwick

and imu complementary filter that do not appear to have been ported to

ROS2. These packages fuse angular velocity and linear acceleration data and

produce a device orientation as an output. Most IMU devices support some

level of on-board sensor fusion so this functionality may not be required in

many applications.

2.4.4 LiDAR

Light Detection and Ranging (LiDAR) is a range-finding technique based on

illuminating a target with a laser and measuring the reflected light. LiDAR

driver nodes publish scan data as either a LaserScan or a PointCloud2 mes-

sage.

Table 12 contains LiDAR device manufacturers that have some level of ROS2

support.

18

UNCLASSIFIED

GVSC-GVR FY20 19

Table 12. LiDAR support in ROS2.

Device Eloquent Status Repo

Velodyne Build from source [48]

Hokuyo Build from source [49]

SICK Build from source [50]

Ouster Debian exists [51]

2.4.5 Cameras

Cameras are sensors that capture image data in both the visible and non-

visible light spectrums. In some cases, the extrinsic (e.g. position and orien-

tation relative to the robot) and intrinsic (e.g. lens distortion) properties of

the cameras are important for making sense of the image data. For example,

stereo cameras compare the images from the two different cameras that are

offset in space.

Table 13 contains packages supporting camera calibration in ROS2.

Table 13. Camera calibration packages.

Package Description Eloquent Status Repo

image common calibration management

and image transport

Debian exists [52]

Table 14 contains stereo camera device manufacturers that have some level

of ROS2 support.

Table 14. Stereo camera support in ROS2.

Device Eloquent Status Repo

Intel RealSense Build from source [53]

StereoLabs Zed Build from source [54]

Support for popular GigE Vision monocular cameras (e.g. AVT Prosilica,

FLIR Blackfly, Basler Ace) has not yet been ported to ROS2.

19

UNCLASSIFIED

GVSC-GVR FY20 20

2.5 Tools

2.5.1 Command Line

Core ROS1 command line tools such as roslaunch, rosrun, rostopic, etc. have

been consolidated under a single ROS2 command line tool that supports the

following subcommand functions:

• Run Launch Files

• Run Executables

• List and Describe Nodes

• List, Describe, Set, and Get Parameters

• Publish, Subscribe, and Describe Topics

• Execute and Describe Services

• Play and Record Bags

A very nice “cheat sheet” for the ROS2 CLI has been contributed by Ubuntu

[55].

2.5.2 RQt

ROS1 includes RQt, a comprehensive set of tools based on PyQt, that pro-

vide GUI support for interaction, introspection, monitoring, data collection

and visualization.

There are separate repositories for the RQt framework and available RQt

plugins that can be found at [56].

Table 15 contains a description of the RQt plugins that have so far been

ported to ROS2.

Table 16 contains a description of useful, non-experimental RQt plugins

from ROS1 that have not been ported to ROS2.

20

UNCLASSIFIED

GVSC-GVR FY20 21

Table 15. RQt plugins in ROS2.

Plugin Description Notes

Action Type Browser Describe known action types

Dynamic Reconfigure Set parameters at runtime

Node Graph Display nodes and communica-

tion paths

Process Monitor Display list of running nodes

Console Display and filter log messages Only displays

default node

loggers and fil-

tering by node

does not work

Python Console Provides a panel to access a

Python shell

Shell Provides a panel to access an

operating system shell

Robot Steering Simple widgets for commanding

velocity

Service Caller Invoke service calls

Service Type Browser Describe known service types

Message Publisher Write messages to topics

Message Type Browser Describe known message types

Topic Monitor List topics and their current

values

Image View Render an image topic

Plot Plot data being published to

topics

21

UNCLASSIFIED

GVSC-GVR FY20 22

Table 16. RQt plugins not in ROS2.

Plugin Description

Package Graph Displays graphs of ROS package dependencies

Bag Record, play, and inspect bag files

Web Provides a panel to access a web URL

Diagnostics Viewer Display raw diagnostics

Logger Levels Dynamically set verbosity on a per logger basis

Runtime Monitor Display current, categorized diagnostic status

Navigation Viewer Display maps and plans

Pose View Visualize the orientation described by a pose topic

TF Tree Visualize the transform tree of a robot

22

UNCLASSIFIED

GVSC-GVR FY20 23

2.5.3 RViz

RViz is a GUI tool for visualizing data that is published by ROS nodes.

Some examples of display types handled by RViz are:

• Robot Model

• TF

• Axes

• Point Cloud

• Odometry

Almost all of the default display plugins are supported by RViz in ROS2

Eloquent. Only DepthCloud and Effort, which do not seem to be widely

used, are missing [57].

2.5.4 Gazebo

Gazebo is the standard physics simulation environment and visualizer for

ROS1. Work was completed over the summer of 2019 to port the bulk of

Gazebo to ROS2 [58]. A complete list of Gazebo plugins and their ROS2

migration status is available at [59].

Ignition Gazebo is an updated and restructured version of the classic Gazebo

software with improved performance and rendering capabilities. Although

Ignition Gazebo uses its own middleware layer, called Ignition Transport, for

inter-process communication, a ROS2-to-Ignition Transport bridge is avail-

able at [60].

23

UNCLASSIFIED

GVSC-GVR FY20 24

3 Migration

This section gives a brief summary of existing and planned ROS1 to ROS2

migration techniques.

3.1 Porting from ROS1 to ROS2

To illustrate the type of effort needed to port code from ROS1 to ROS2, the

following is a list of some of the major tasks to be undertaken during the

conversion process:

• Convert CMakeLists.txt file to use ament cmake [61]

• Convert package.xml file from format 1 to at least format 2 [62]

• Convert time and duration types in message definition files to the new

versions of the types defined by the builtin interfaces package

• Convert topic, service, and action code to use new API

• Convert usages of ros::Time to std::chrono

• Convert nodelets to components

• Convert dynamic reconfiguration code to use parameter change callbacks

• Convert any shared, global parameters to local parameters (see section

2.2.5)

• Switch from Boost to standard C++ library when possible

For a more detailed conversion guide, see [63].

3.2 Techniques

This section describes common techniques for facilitating the migration of

existing ROS1 systems to ROS2.

24

UNCLASSIFIED

GVSC-GVR FY20 25

3.2.1 ROS1 API Shim

Over the past few years, the possibility of a ROS1 to ROS2 API shim layer

has been discussed and some prototyping has been undertaken. This layer

would allow ROS1 code to be run directly on top of a ROS2 infrastructure.

This would theoretically allow ROS1 code to immediately benefit from some

advantages of ROS2 like the DDS middleware and eliminate the need to run

the ROS1 and ROS2 infrastructure side-by-side during a piecewise migra-

tion. ROS1 packages would then be gradually migrated to be native ROS2

and eventually the shim layer would no longer be needed. As of today, there

is no known viable implementation of this shim layer.

3.2.2 Automated Tools

There has been some discussion around creating tools to automate the con-

version process. An active project with the goal of providing automatic con-

version tools is at [64].

3.2.3 ROS1 Bridge

The ROS1 Bridge is the only currently implemented technique for doing a

piecewise migration to ROS2. The bridge essentially translates the ROS1

messaging protocol to DDS and vice versa. Some of the drawbacks to using

a bridge are:

• bridge is a single point of failure

• extra CPU load due to message translation

• increased message passing latency

In a performance study executed in 2016 it was found that ROS2 bridge la-

tency was around half a millisecond [7]. Since the ROS1 bridge figures to be

an important part of the ROS2 migration process, it would be useful to ex-

ecute a new study that characterizes latency, throughput, and relative CPU

load.

25

UNCLASSIFIED

GVSC-GVR FY20 26

4 Training

A relatively comprehensive set of textbooks, tutorials, references, and course

material exist for ROS1. ROS2 currently lags behind ROS1 on nearly all of

these fronts, mostly due to the rapid development pace of ROS2.

There are number of introductory texts for ROS1 such as [65], [66], [67], and

[68]. There is currently no equivalent book coverage for ROS2.

Based on release notes and commit history, the amount of ROS2 demos and

tutorials are increasing over time. They can be found at [69]. ROS2 refer-

ence material, including API documentation, is available at [70].

There are online introductory courses available for ROS2 at [71] and [72].

The content is geared toward beginners and only covers the basics of the

build system, nodes, topics, and services.

26

UNCLASSIFIED

GVSC-GVR FY20 27

5 Conclusion

There are still areas of concern related to the adoption of and migration to

ROS2 for ROS-M projects. These concerns fall into the following major cat-

egories:

• Feature Gaps

• Quality

• Compliance

• Training

5.1 Feature Gaps

There are still areas where feature gaps exist with respect to ROS1. Some of

the gaps observed during the survey of Eloquent include:

• generalized mechanism for setting level of individual loggers at runtime

• bridging ROS1 actions to ROS2 actions

• remote launch

• missing control algorithms (e.g. differential drive, ackermann, see section

2.2.10)

• missing or incomplete drivers (e.g. IMU, GPS, see section 2.3.7)

• missing or incomplete RQt plugins (e.g. console, logger levels, bag, diag-

nostics, TF tree, see section 2.5.1)

Note that there is already an experimental implementation of ROS action

bridging at [73].

27

UNCLASSIFIED

GVSC-GVR FY20 28

5.2 Quality

Feature set parity is a necessary but insufficient criteria for successful adop-

tion of ROS2. Software quality is also a major concern. Much of the ROS2

software is relatively new when compared to ROS1. It will take a significant

amount of testing and bug fixing by the ROS community to bring ROS2 to

an acceptable and trusted level of quality. Using a standard DDS middle-

ware (with the option of licensing a field-proven implementation like RTI

Connext) helps in this regard, but the middleware is only a small, albeit

core, subset of the overall software. When it comes to open source software,

quality typically comes through real-world use that leads to the reporting

and fixing of bugs.

5.3 Compliance

By virtue of adopting DDS as its middleware layer, ROS2 realizes improve-

ments over ROS1 in terms of meeting certain security and reliability goals of

ROS-M. However, DDS is not a “silver bullet” in this regard. Not all DDS

implementations are created equal and will vary in terms of performance and

compliance to the DDS specification. Projects should be careful to choose

the DDS implementation that meets their specific objectives.

Similarly, future projects may require real-time determinism in order to meet

reliability and safety requirements. Enabling DDS quality of service fea-

tures is not enough. An operating system with real-time capabilities (e.g.

priority-based preemption) and tuning (e.g. eliminating page faults) needs to

be used. Also, the ROS2 framework and the application software that runs

on it must be carefully designed such that time critical functions are guaran-

teed to complete before their deadlines. More study is required in this area.

See [74] for an initial discussion of real-time support in ROS2 and [75] for

current status of the ROS2 Real-time Working Group as of February 2020.

5.4 Training

Training is another aspect that could delay migration to ROS2. Current

course offerings are not sufficient for an intensive “boot camp” style training.

A more comprehensive training would require more coverage of advanced

topics like constructing launch files and effectively using Rviz/Gazebo. Also,

hands-on lab training involving more advanced features like Navigation 2

28

UNCLASSIFIED

GVSC-GVR FY20 29

and some of the perception packages could go a long way to showing devel-

opers how ROS2 can be used to solve real world problems in robotics.

5.5 Recommendations

The survey of ROS2 Eloquent shows that the core ROS2 infrastructure is

approaching parity with ROS1. The Foxy release in May 2020 will be a

long-term support (LTS) release and there is discussion in the ROS2 TSC

to “back off to annual releases” starting with that release [76]. This seems

to indicate that there is a feeling that Foxy will represent what could be

considered a reasonably complete core feature set for ROS2. Thus, it ap-

pears Foxy may be the point at which ROS2 could be seriously considered

for projects that implement their own feature packages and only require the

core ROS2 infrastructure. A follow-on analysis of Foxy should be performed

when it is available to determine if this is the case.

The survey also shows that while many projects related to drivers and algo-

rithms are currently in progress, this development lags significantly behind

the core infrastructure. More experience with community provided pack-

ages in these areas is needed before it is possible to determine which specific

packages are at a level where they could be combined to form the foundation

of a working UGV system.

In order to fill gaps in ROS2, these follow-on efforts are proposed:

• Help port the packages identified as feature gaps

• Execute an updated middleware performance study that includes all

DDS implementations integrated by ROS2 and compares and contrasts

throughput, latency, and relative CPU load of ROS1, ROS2, and ROS1-

ROS2 bridged communication.

• Execute an updated DDS security analysis with respect to DoD infor-

mation assurance and safety guidelines (e.g. DoDI 8500.2, AR 25-2, and

MIL-STD-882-E).

• Create a document that provides guidance related to configuring security

on a ROS2 system.

• Closely monitor the ongoing discussions in the ROS community regard-

ing real-time support, participate in ROS2 real-time working group meet-

29

UNCLASSIFIED

GVSC-GVR FY20 30

ings, and provide requirements and feedback as appropriate. See section

5.2.

• Execute a targeted set of projects to migrate existing ROS1 code bases

to ROS2. The lessons learned from these projects will provide valuable

guidance for future projects. One output of these projects would be a mi-

gration guide that provides detailed porting instructions and assistance

in determining level of effort for a particular porting project.

• Until a viable alternative is identified for 3D SLAM, help support the

maintenance of Cartographer for ROS2.

• Identify and support projects that use drivers and algorithm packages

supplied by the ROS community with the goal of evaluating the suitabil-

ity of those packages for ROS-M projects.

30

UNCLASSIFIED

GVSC-GVR FY20 31

References

[1] Improvements to rmw for deterministic execution. January 2020.
https://github.com/ros2/design/issues/259.

[2] ROS 2 Technical Steering Committee Meeting Minutes. January 2020.
https://discourse.ros.org/t/ros-2-tsc-meeting-minutes-2020-01-16/12382.

[3] ROS 2 Technical Steering Committee Meeting Minutes. March 2020.
https://discourse.ros.org/t/ros-2-tsc-meeting-minutes-2020-03-18/13313.

[4] Fast-RTPS vs Cyclone DDS vs OpenSplice DDS, December 2019.
https://www.eprosima.com/index.php/resources-all/performance/125-fast-rtps-vs-
cyclone-dds-vs-opensplice-dds.

[5] APEX.AI Adopts eProsima Fast RTPS for its Autonomous Driving Framework.
February 2019. https://www.eprosima.com/index.php/company-all/news/103-apex-
ai-adopts-eprosima-fast-rtps-for-its-autonomous-driving.

[6] ROS2 - Is it time to switch? December 2019. https://blog.roverrobotics.com/ros-2-is-
it-time-to-switch-tutorial-included.

[7] Y. Maruyama, S. Kato, and T. Azumi. Exploring the performance of ros2. October
2016.

[8] J. Kim, J. Smereka, C. Cheung, S. Nepal, and M. Grobler. Security and performance
considerations in ros 2: A balancing act. September 2018.

[9] Composing multiple nodes in a single process.
https://index.ros.org/doc/ros2/Tutorials/Composition.

[10] Migrating launch files from ROS1 to ROS2.
https://index.ros.org/doc/ros2/Tutorials/Launch-files-migration-guide/.

[11] Support for respawn in ‘ExecuteProcess’.
https://github.com/ros2/launch/issues/287.

[12] Parameter Blackboard Demo. https://github.com/ros2/demos/blob/master/
demo nodes cpp/src/parameters/parameter blackboard.cpp.

[13] Principle of Least Privilege. https://en.wikipedia.org/wiki/Principle of least privilege.

[14] ROS2 “Global Parameter Server” Status. https://discourse.ros.org/t/ros2-global-
parameter-server-status/10114.

[15] ROS2 Plugin Repository. https://github.com/ros/pluginlib/tree/eloquent.

[16] ROS2 Geometry2 Repository. https://github.com/ros2/geometry2.

31

UNCLASSIFIED

GVSC-GVR FY20 32

[17] ROS2 Bond Repository. https://github.com/ros/bond core/tree/ros2.

[18] ROS2 Diagnostic Updater Repository.
https://github.com/ros/diagnostics/tree/eloquent/diagnostic updater.

[19] ROS1 Controls Repository. https://github.com/ros-controls/ros control.

[20] ROS1 Controllers Repository. https://github.com/ros-controls/ros controllers.

[21] ROS2 Controls Repository. https://github.com/ros-
controls/ros2 control/tree/dashing update.

[22] ROS2 Controller Repository. https://github.com/ros-
controls/ros2 controllers/tree/dashing update.

[23] ROS2 Robot Localization Repository. https://github.com/cra-ros-
pkg/robot localization/tree/dashing-devel.

[24] ROS2 SLAM Toolbox Repository.
https://github.com/SteveMacenski/slam toolbox/tree/eloquent-devel.

[25] ROS2 Cartographer Repository. https://github.com/ros2/cartographer.

[26] Default SLAM(s) For ROS2. January 2020. https://github.com/ros-
planning/navigation2/issues/1389.

[27] S. Macenski, R. White, J. Clavero, and F. Martin. The marathon 2: A navigation
system. March 2020.

[28] ROS2 Navigation 2 Repository. https://github.com/ros-
planning/navigation2/tree/eloquent-devel.

[29] ROS2 Timed Elastic Band Local Planner Repository. https://github.com/rst-tu-
dortmund/teb local planner/tree/eloquent-devel.

[30] ROS2 Image Pipeline Repository. https://github.com/ros-
perception/image pipeline/tree/ros2.

[31] ROS2 Point Cloud Library Repository. https://github.com/ros-
perception/perception pcl/tree/dashing-devel.

[32] ROS2 OpenCV Machine Vision Repository. https://github.com/ros-
perception/vision opencv/tree/ros2.

[33] ROS2 TensorFlow Machine Learning Repository. https://github.com/alsora/ros2-
tensorflow.

[34] ROS2 Object Analytics Repository. https://github.com/intel/ros2 object analytics.

[35] ROS2 MoveIt! 2 Repository. https://github.com/ros-planning/moveit2.

[36] ROS2 Grasp Repository. https://github.com/intel/ros2 grasp library.

[37] ROS Sensors Wiki. December 2019. http://wiki.ros.org/Sensors.

32

UNCLASSIFIED

GVSC-GVR FY20 33

[38] ROS2 CANopen Repository. https://github.com/ros-
industrial/ros canopen/tree/dashing.

[39] Dataspeed Inc DBW Repository.
https://bitbucket.org/DataspeedInc/profile/repositories.

[40] ROS2 NovAtel GPS Driver Repository. https://github.com/swri-
robotics/novatel gps driver/tree/dashing-devel.

[41] ROS2 GPS Tools Repository. https://github.com/swri-
robotics/gps umd/tree/dashing-devel/gps tools.

[42] ROS1 Microstrain GX4/GX5 Driver Repository. https://github.com/ros-
drivers/microstrain mips.

[43] ROS1 ublox Driver Repository. https://github.com/KumarRobotics/ublox.

[44] ROS2 Microstrain GX2 IMU Driver Repository. https://github.com/ros-
drivers/microstrain 3dmgx2 imu/tree/dashing-devel.

[45] ROS2 Phidget IMU Driver Repository. https://github.com/ros-
drivers/phidgets drivers/tree/dashing.

[46] ROS1 Bosch IMU Driver Repository. https://github.com/dheera/ros-imu-bno055.

[47] ROS1 KVH IMU Driver Repository. https://github.com/ros-drivers/kvh drivers.

[48] ROS2 Velodyne Driver Repository. https://github.com/ros-
drivers/velodyne/tree/dashing-devel.

[49] ROS2 Hokuyo Driver Repository. https://github.com/bponsler/urg node/tree/ros2-
devel.

[50] ROS2 SICK Driver Repository. https://github.com/SICKAG/sick scan2.

[51] ROS2 Ouster Driver Repository. https://https://github.com/SteveMacenski/ros2 ouster drivers.

[52] ROS2 Camera Calibration and Image Transport Repository. https://github.com/ros-
perception/image common/tree/dashing.

[53] ROS2 Intel RealSense Camera Driver Repository.
https://github.com/intel/ros2 intel realsense.

[54] ROS2 StereoLabs Zed Camera Driver Repository. https://github.com/stereolabs/zed-
ros2-wrapper.

[55] ROS2 CLI Cheat Sheet. https://github.com/ubuntu-robotics/ros2 cheats sheet.

[56] ROS2 Visualization Tools. https://github.com/ros-visualization.

[57] ROS2 RViz README. November 2019.
https://github.com/ros2/rviz/blob/ros2/README.md.

33

UNCLASSIFIED

GVSC-GVR FY20 34

[58] Migrating Gazebo plugins to ROS2. August 2019.
https://discourse.ros.org/t/migrating-gazebo-plugins-to-ros2/10433.

[59] ROS2 Gazebo Plugins. https://github.com/ros-simulation/gazebo ros pkgs/wiki.

[60] ROS2 Ignition Bridge Repository. https://github.com/osrf/ros2 ign.

[61] ament cmake User Documentation. https://index.ros.org/doc/ros2/Tutorials/Ament-
CMake-Documentation.

[62] Package Manifest Format Two Specification. https://www.ros.org/reps/rep-
0140.html.

[63] ROS2 Conversion Guide. https://index.ros.org/doc/ros2/Contributing/Migration-
Guide.

[64] ROS2 Automated Conversion. https://github.com/awslabs/ros2-migration-tools.

[65] M. Quigley. Programming Robots with ROS. O’Reilly, 2015.

[66] W. Newman. A Systematic Approach to Learning Robot Programming with ROS.
CRC Press, 2018.

[67] C. Fairchild. ROS Robotics By Example. Packt Publishing, 2017.

[68] L. Joseph. Mastering ROS for Robotics Programming. Packt Publishing, 2018.

[69] ROS2 Tutorials. https://index.ros.org/doc/ros2/Tutorials.

[70] ROS2 Reference Guide. http://docs.ros2.org.

[71] ROS2 How To: Discover Next Generation ROS.
https://www.udemy.com/course/ros2-how-to.

[72] ROS2 Basics in 5 Days. https://www.theconstructsim.com/robotigniteacademy learnros/ros-
courses-library/ros2-basics-course.

[73] ROS2 Bridging of ROS1 Actions Repository. https://github.com/ipa-
hsd/action bridge.

[74] ROS2 and Real-time. https://discourse.ros.org/t/ros-2-and-real-time/8796.

[75] ROS2 Real-time Working Group Online Meeting 10. https://discourse.ros.org/t/ros-
2-real-time-working-group-online-meeting-10-feb-5-2020-meeting-minutes/12809.

[76] ROS2 Technical Steering Committee Meeting Minutes. December 2019.
https://discourse.ros.org/t/ros-2-tsc-meeting-minutes-2019-12-19/12069.

34

UNCLASSIFIED

