
1DISTRIBUTION A. See first slide

U.S. ARMY COMBAT CAPABILITIES
DEVELOPMENT COMMAND –
GROUND VEHICLE SYSTEMS CENTER

Evaluation of ROS2 Eloquent

DISTRIBUTION A. Approved for public release; distribution
unlimited. OPSEC#4073.

Matthew Schickler
matthew.schickler@flir.com

2DISTRIBUTION A. See first slide

AGENDA

Proprietary

OVERVIEW (30 minutes)
• Introduction
• Background
• User Survey
• Summary Findings
• Migration
• Training
• Conclusions
• Recommendations

DETAILED ROS2 FEATURE SURVEY (45 minutes)

Q&A (10 minutes)

3DISTRIBUTION A. See first slide

OBJECTIVE: Evaluate ROS2 Eloquent readiness for ROS-M and make
recommendations for future action.

STRATEGY: Execute a targeted gap analysis:
• Compare core ROS2 functionality to what is offered in ROS1
• Perform a feature survey of ROS2 packages maintained by the ROS

community:
• In ROS1, almost 2500 separate packages exist so limit survey to

packages of particular interest to ROS-M
• As a coarse indicator of relative maturity, identify which packages are

available as Debians from packages.ros.org versus which must be built
from source

• Conduct a user survey among NAMC members to understand the current
levels of ROS usage, plans for ROS2, and issues preventing greater ROS2
adoption

• Identify existing resources for ROS2 training and migration

INTRODUCTION

4DISTRIBUTION A. See first slide

• ROS1 has been under active development for over 12 years:
• Extremely popular framework for robot software development
• Primarily research, growing desire to use in production systems

• ROS2 is a ground-up redesign announced in 2014 with the goal of
adding security, reliability, and real-time

• ROS2 uses industry-standard Data Distribution Service (DDS)
middleware

• ROS2 API is substantially improved over ROS1, but changes are
significant

• Migration from ROS1 to ROS2 is needed
• Five ROS2 distros so far, each adding back capability originally in

ROS1
• Latest distro is Eloquent, Foxy coming May 2020

BACKGROUND

5DISTRIBUTION A. See first slide

KEY TAKEAWAYS
• 71% of respondents are currently using ROS1

– 48% to a significant (50%) or greater extent; 6% are using it exclusively

• 41% of respondents are using ROS2
– 18% to a significant (50%) extent; none are using it exclusively

• 53% of respondents are quite to highly likely to start using ROS2 within the
next year

• 30% of respondents are quite to highly likely to start porting ROS1 code to
ROS2 within the next year

• The lack of overall maturity of ROS 2 and key ROS1 features missing from
ROS2 are the primary factors hindering adoption
– Most Important: a comprehensive set of device drivers, a motion planning framework

(MoveIt!), and XML based launch files

• 63% of respondents indicated significant to high interest in online, self-
paced ROS2 training materials

USER SURVEY

• 8 questions asking if members are currently using ROS1 or ROS2, what features
are most important to them, and what is required to increase adoption of ROS2

• 17 respondents

SUMMARY

6DISTRIBUTION A. See first slide

SUMMARY FINDINGS
• As of ROS2 Eloquent, core ROS2 infrastructure is

approaching feature parity with ROS1 but not there yet
• ROS2 Foxy might be point at which parity is achieved
• Completeness and maturity of ROS2 drivers and algorithms

lagging behind core functionality
• Cartographer (3D SLAM) no longer supported by Google
• Still waiting for many ROS packages to be officially released

(e.g. MoveIt2! Is in Beta)
• Training materials are still sparse but some forms like

tutorials are growing
• More experience with specific ROS packages necessary to

determine suitability for ROS-M projects

7DISTRIBUTION A. See first slide

MIGRATION - PORTING FROM ROS1 TO ROS2

• Some major considerations:
– CMakeLists.txt and package.xml changes
– Re-design nodes to use Node base class
– Re-design nodes for asynchronous operation
– New API for nodes, timers, topics, services, actions
– Convert Nodelets to Components
– Convert dynamic reconfigure to parameter callbacks
– Convert global parameters to local parameters

• More detailed conversion guide at:
https://index.ros.org/doc/ros2/Contributing/Migration-Guide

• Goal of MARS project is to port RTK (large code base) from
ROS1 to ROS2, should result in more detailed porting
guidance for the community

8DISTRIBUTION A. See first slide

MIGRATION - ROS1 BRIDGE

• Translates between ROS1 message protocol and DDS

• Drawbacks:
– Bridge is a single point of failure
– Extra CPU load due to message translation
– Increased message passing latency

• In 2016 study, ROS2 bridge latency was found to only be
about 500 microseconds

9DISTRIBUTION A. See first slide

TRAINING

• ROS1 available training includes books, tutorials, references, and course
material

• ROS2 lags behind in all of these areas but the number of ROS2 tutorials
and demos is increasing

• No ROS2 books but some very basic online courses exist:

https://www.udemy.com/course/ros2-how-to

https://www.theconstructsim.com/robotigniteacademy_learnros/ros-courses-
library/ros2-basics-course

• Robotis Turtlebot 3 e-Manual worth taking a look at:

http://emanual.robotis.com/docs/en/platform/turtlebot3/ros2_bringup/

10DISTRIBUTION A. See first slide

CONCLUSIONS - FEATURE GAPS

• General mechanism for setting level of individual loggers at
runtime

• Bridging ROS1 actions to ROS2 actions (experimental
implementation exists)

• Remote launch

• Missing control algorithms (e.g. differential drive, Ackermann)

• Missing or incomplete drivers (e.g. IMU, GPS)

• Missing or incomplete RQt plugins (e.g. console, logger levels,
bag, diagnostics, TF tree)

11DISTRIBUTION A. See first slide

CONCLUSIONS - QUALITY

• Most of the ROS2 software is relatively new compared to ROS1

• Significant amount of testing and bug fixing needed by ROS
community to bring ROS2 to same level of quality as ROS1

• Using DDS helps but the middleware is only a small subset of
overall software

• ROS2 is an open source project and quality will come mostly
through bug reporting and fixing related to real-world use

• Bottom line: The more we use it, the better it will get

12DISTRIBUTION A. See first slide

CONCLUSIONS - COMPLIANCE

• ROS2 is significantly improved over ROS1 in the areas of
security and reliability due its use of DDS as its middleware

• However, DDS is NOT a silver bullet:
– Different implementations may vary in terms of performance and

compliance with the specification
– Must be properly configured in order to achieve security benefits

• Real-time determinism is an important feature to meet
reliability and safety requirements:
– Real-time Operating System Support
– ROS2 code must be real-time safe (currently not the case)
– Need guidance for developers on how to make their code safe
– Current status of Real-time Working Group (as of Feb 2020):

https://discourse.ros.org/t/ros-2-real-time-working-group-online-meeting-10-
feb-5-2020-meeting-minutes/12809

13DISTRIBUTION A. See first slide

RECOMMENDATIONS

• Help port packages or capabilities identified as feature gaps
• Execute an updated middleware performance study
• Execute an updated DDS security analysis
• Create guidance related to configuring security in ROS2
• Participate in ROS2 real-time working group
• Execute targeted projects to migrate existing ROS1 code

bases to ROS2 and report/fix bugs
• Until a viable alternative is identified for 3D SLAM, help

support maintenance of Cartographer SLAM for ROS2
• Identify and support projects that use drivers and algorithm

packages supplied by the ROS community with goal of
evaluating the suitability of those packages for ROS-M
projects

14DISTRIBUTION A. See first slide

• Build System

• Core
 Nodes
 Communication
 Middleware
 Components
 Launch
 Parameters
 Plugins
 Logging
 Transforms
 Bonding

ROS2 FEATURE SURVEY

• Algorithms
 Diagnostics
 Controllers
 State

Estimation
 SLAM
 Navigation
 Perception
 Manipulation

• Drivers
 CAN
 GPS
 IMU
 LiDAR
 Cameras

• Tools
 Command

Line
 RQt
 Rviz
 Gazebo

15DISTRIBUTION A. See first slide

BUILD SYSTEM

• CMake is still the fundamental build system for individual
ROS2 packages

• In ROS1, the catkin build tool was used to build sets of inter-
dependent packages:
– Tools: catkin_make, catkin_make_isolated, catkin_tools

CMakeLists.txt: use find_package(catkin …) and the catkin_package()
command to define a ROS package

– Package manifest file (package.xml)
• In ROS2, catkin has been replaced:

– Tool: “colcon build”
CMakeLists.txt: use find_package() for each individual ROS package
and ament_package() to define a ROS package

– New package manifest file format
– colcon build output is aligned more closely with the output of a

standard CMake build (e.g. there is no longer a “devel” directory)

16DISTRIBUTION A. See first slide

• Build System

• Core
 Nodes
 Communication
 Middleware
 Components
 Launch
 Parameters
 Plugins
 Logging
 Transforms
 Bonding

ROS2 FEATURE SURVEY

• Algorithms
 Diagnostics
 Controllers
 State

Estimation
 SLAM
 Navigation
 Perception
 Manipulation

• Drivers
 CAN
 GPS
 IMU
 LiDAR
 Cameras

• Tools
 Command

Line
 RQt
 Rviz
 Gazebo

17DISTRIBUTION A. See first slide

NODES

• Implemented by deriving from the Node base class
• Single process can now easily contain multiple nodes (this

required rewriting parts of your code as a Nodelet in ROS1)
• Node activities orchestrated through executors (can be

single-threaded or multi-threaded)
• New API encourages an asynchronous, event-driven design

that uses callbacks to handle timers, subscribers, and service
callbacks

• Asynchronous operation, elimination of blocking operations
important for overall responsiveness and real-time safe
designs

18DISTRIBUTION A. See first slide

NODES - LIFECYCLE MANAGEMENT

• New capability not supported by ROS1
• More control over node initialization/shutdown sequencing
• Implemented by inheriting from LifecycleNode base class
• A LifecycleNode has a well-defined set of states and

transitions. The four primary states are:
– Unconfigured: Initial state
– Inactive: Configured but not currently performing any processing
– Active: Main state, performing processing
– Finalized: Shut down but available for debugging and introspection

• When a transition is requested, callbacks are made to give
the node a chance to take appropriate actions

• The lifecycle model is fully integrated with the command
line tools and the launch system

19DISTRIBUTION A. See first slide

NODES - LIFECYCLE STATE DIAGRAM

20DISTRIBUTION A. See first slide

COMMUNICATION

• Supports topics, services, and actions as in ROS1 but with a
different API

• Actions are now part of the core API instead of an add-on

• Uses the same message definition format as ROS1 with
some very minor differences related to types that define
time and durations

21DISTRIBUTION A. See first slide

MIDDLEWARE

• Based on Data Distribution Service (DDS)
• DDS-Security Profile adds capabilities not in ROS1:

– Privacy: Strong symmetric key encryption (e.g. AES)
– Authentication: Private keys and X.509 certificates
– Authorization: Read/write permissions per-node, per-topic
– Authorization config files cryptographically protected

• Supports ROS1 Quality of Service (QoS) configurations:
– Best effort or reliable transport
– Queue depths
– Latching
– Liveliness (required “Bond” add-on package in ROS1)

• Adds new QoS configurations:
– Deadlines: sends notification if update not sent/received on time
– Lifespan: prevents delivery of stale data

22DISTRIBUTION A. See first slide

MIDDLEWARE (CONTINUED)

• DDS capabilities not yet available in ROS2:
– Message Prioritization: service higher priority messages before

lower priority messages, drop low priority before high
– Time Sensitivity: use the age of messages to determine the

processing order to guarantee deadlines are achieved
• Performance analysis was done in 2016 and showed that

DDS latency was about the same as in ROS1.
• A security analysis was done in 2018 that concluded that the

default ROS2 middleware “did not conform to the security
specification by OMG [Object Management Group]”.

• Active development on the middleware has continued since
that time, so an updated analysis is required to re-assess the
situation

23DISTRIBUTION A. See first slide

MIDDLEWARE
SUPPORTED DDS IMPLEMENTATIONS

Product License Notes
eProsima Fast RTPS Apache2 ROS2 default

middleware
ADLINK Opensplice Apache2 Support will be

discontinued in favor of
Cyclone

RTI Connext Commercial Must be licensed
Eclipse Cyclone EPL 2.0 Currently missing

security and QoS
features

24DISTRIBUTION A. See first slide

COMPONENTS

• Similar to ROS1 Nodelets

• Nodelets required partial re-write of your existing code

• A ROS2 Node can be turned into a Component with only a
few extra lines of code in your package

• Components can be dynamically loaded into a manager
process (similar to nodelet manager)

25DISTRIBUTION A. See first slide

LAUNCH

• New programmatic launch system based on Python provides
increased flexibility over ROS1 XML launch

• Supports event handling and node lifecycles, which allows:
– Initialization sequencing decisions like “don’t launch node B

until node A is active (i.e. fully configured and running)”
– Increased flexibility for handling faults (ROS1 only allows

“respawn process” or “shutdown entire launch system”)
• Does not yet support remote launch
• Static XML launch files also supported as of Eloquent

– Similar to ROS1 XML but with some changes
– Migration is needed
– Respawn attribute not supported, enhancement request exists

26DISTRIBUTION A. See first slide

PARAMETERS

• In ROS1 any node can read/write any parameter (global)
• In ROS2 each parameter is owned by exactly one node (local)
• Parameter owner can enforce constraints such as a valid value

range or read-only access
• Dynamic reconfigure through simple callback
• Lack of global parameter server could be a problem for migration

in cases where multiple nodes shared a single parameter
• While it is possible to implement a single global parameter server

node that allows general, unrestricted parameter access, it is not
recommended since this violates system security principles

• Shared parameters should be grouped into cohesive sets and
managed by nodes created specifically for that purpose

27DISTRIBUTION A. See first slide

LOGGING

• Similar to ROS1 but has generalized the concept of a logger object
• Requires an additional logger object argument to logger macro
• Added features:

– Log based on the Boolean result of a general function
– Skip first log message

• Missing features:
– Throttle with an initial delay
– Filter based on formatted log message contents
– Generalized mechanism for changing individual log levels at runtime

• Would benefit greatly from a tool like rqt_logger_level

28DISTRIBUTION A. See first slide

OTHER/MISCELLANEOUS

• URDF still used for robot models
• Transforms still calculated using TF2
• Plugin support is available and already used heavily by navigation

stack, Rviz, and MoveIt!
• The ROS1 bond package (for monitoring liveliness of the

connection between two nodes) has been ported

29DISTRIBUTION A. See first slide

• Build System

• Core
 Nodes
 Communication
 Middleware
 Components
 Launch
 Parameters
 Plugins
 Logging
 Transforms
 Bonding

ROS2 FEATURE SURVEY

• Algorithms
 Diagnostics
 Controllers
 State

Estimation
 SLAM
 Navigation
 Perception
 Manipulation

• Drivers
 CAN
 GPS
 IMU
 LiDAR
 Cameras

• Tools
 Command

Line
 RQt
 Rviz
 Gazebo

30DISTRIBUTION A. See first slide

DIAGNOSTICS

[1] https://github.com/ros/diagnostics/tree/eloquent/diagnostic_updater

Package Description Eloquent Repo
diagnostics_updater Tools for easily updating the

diagnostics topic
Debian 1

• Currently not supported in ROS2:
– diagnostic_aggregator: a node that uses analyzer plugins to process

and categorize diagnostics data
– rqt_robot_monitor: a plug-in that allows viewing of diagnostic status

through the RQt GUI

31DISTRIBUTION A. See first slide

CONTROLLERS

[1] https://github.com/ros-controls/ros2 control/tree/dashing update
[2] https://github.com/ros-controls/ros2 controllers/tree/dashing update

Package Description Eloquent Repo
ros_control Controller manager, robot

hardware interface
Source 1

ros_controller Useful controllers such as
joint trajectory, etc.

Source 2

• ROS1 controller packages have NOT yet been ported to ROS2
• As of January 2020, there was interest by Amazon and PAL

Robotics to form a working group with the goal of doing a
conversion

• Controllers for differential and Ackermann vehicle control would
be useful additions to ROS2 for ROS-M

32DISTRIBUTION A. See first slide

STATE ESTIMATION & SLAM

[1] https://github.com/cra-ros-pkg/robot localization/tree/dashing-devel
[2] https://github.com/SteveMacenski/slam toolbox/tree/eloquent-devel
[3] https://github.com/ros2/cartographer

Package Description Eloquent Repo
robot_localization Non-linear state estimation

through sensor fusion
Source 1

slam_toolbox Lifelong mapping and
localization (2D)

Source 2

cartographer Google Cartographer SLAM
(3D)

Source 3

• SLAM Toolbox selected by ROS2 TSC as default SLAM
• Cartographer more appropriate for ROS-M because it supports 3D

SLAM
• A port of LaMa SLAM has also been discussed

33DISTRIBUTION A. See first slide

NAVIGATION

[1] https://github.com/ros-planning/navigation2/tree/eloquent-devel
[2] https://github.com/rst-tu-dortmund/teb local planner/tree/eloquent-devel

Package Description Eloquent Repo
navigation2 Global and local planner for

navigation
Source 1

teb_local_planner Timed Elastic Band Local
Planner

Source 2

• navigation2 is the ROS2 replacement for ROS1 move_base:
– Task coordination using behavior trees
– Plugin architecture for planners
– A* default global planner
– DWA default local planner
– TEB local planner port in progress

34DISTRIBUTION A. See first slide

PERCEPTION

[1] https://github.com/ros-perception/image pipeline/tree/ros2
[2] https://github.com/ros-perception/perception pcl/tree/dashing-devel
[3] https://github.com/ros-perception/vision opencv/tree/ros2
[4] https://github.com/alsora/ros2-tensorflow
[5] https://github.com/intel/ros2 object analytics

Package Description Eloquent Repo
image_pipeline Camera calibration, distortion removal,

stereo, depth
Source 1

perception_pcl Data structures and algorithms for
working with point clouds

Debian 2

vision_opencv Data structures and algorithms f or
computer vision

Debian 3

tensorflow ROS nodes for using tensorflow
machine learning

Python in
repo

4

object_analytics Object tracking and 3D localization Source 5

35DISTRIBUTION A. See first slide

MANIPULATION

[1] https://github.com/ros-planning/moveit2
[2] https://github.com/intel/ros2_grasp_library

Package Description Eloquent Repo
moveit2 Joint motion planning Source 1

grasp Grasp detection and
planning

Source 2

• MoveIt! 2 is currently in Beta

36DISTRIBUTION A. See first slide

• Build System

• Core
 Nodes
 Communication
 Middleware
 Components
 Launch
 Parameters
 Plugins
 Logging
 Transforms
 Bonding

ROS2 FEATURE SURVEY

• Algorithms
 Diagnostics
 Controllers
 State

Estimation
 SLAM
 Navigation
 Perception
 Manipulation

• Drivers
 CAN
 GPS
 IMU
 LiDAR
 Cameras

• Tools
 Command

Line
 RQt
 Rviz
 Gazebo

37DISTRIBUTION A. See first slide

CAN

[1] https://github.com/ros-industrial/ros canopen/tree/dashing

Package Description Eloquent Repo
ros_canopen Speak to devices using the

CANopen protocol
Source 1

• DBW support for Lincoln MKZ and (Fiat Chrysler) FCA platforms is available in
ROS1 but has not been ported to ROS2

38DISTRIBUTION A. See first slide

GPS

[1] https://github.com/swri-robotics/novatel_gps_driver/tree/dashing-devel
[2] https://github.com/swri-robotics/gps_umd/tree/dashing-devel/gps_tools

Package Description Eloquent Repo
novatel_gps_driver Support for NovAtel GPS /

GNSS receivers
Source 1

gps_tools Convert raw GPS data into
ROS odometry

Source 2

• Drivers for GPS devices from Microstrain (GX4/GX5) and ublox have not yet been
ported to ROS2.

39DISTRIBUTION A. See first slide

IMU

[1] https://github.com/ros-drivers/microstrain 3dmgx2 imu/tree/dashing-devel
[2] https://github.com/ros-drivers/phidgets drivers/tree/dashing

Device Eloquent Repo
Microstrain 3DM-GX2 Source 1

PhidgetSpatial 3/3/3 Debian 2

• ROS1 includes drivers for the following devices that have not been
ported to ROS2:
– MicroStrain GX4/GX5
– Bosch BNO055
– DSP-3000

• ROS1 also includes IMU support packages for filtering that are not yet
ported to ROS2

• Since most devices support some level of on-board sensor fusion, the
filtering packages may not be necessary for many applications

40DISTRIBUTION A. See first slide

LIDAR

[1] https://github.com/ros-drivers/velodyne/tree/dashing-devel
[2] https://https://github.com/bponsler/urg_node/tree/ros2-devel
[3] https://github.com/SICKAG/sick_scan2
[4] https://github.com/SteveMacenski/ros2_ouster_drivers

Device Eloquent Repo
Velodyne Source 1

Hokuyo Source 2

SICK Source 3

Ouster Debian 4

41DISTRIBUTION A. See first slide

CAMERAS

[1] https://github.com/ros-perception/image common/tree/dashing
[2] https://github.com/intel/ros2_intel_realsense
[3] https://github.com/stereolabs/zed-ros2-wrapper

Device Eloquent Repo
Intel RealSense Source 2

StereoLabs Zed Source 3

Package Description Eloquent Repo
image_common Calibration management

and image transport
Debian 1

• Drivers for popular GigE Vision monocular cameras (e.g. AVT Prosilica,
FLIR Blackfly, Basler Ace) have not yet been ported to ROS2.

42DISTRIBUTION A. See first slide

• Build System

• Core
 Nodes
 Communication
 Middleware
 Components
 Launch
 Parameters
 Plugins
 Logging
 Transforms
 Bonding

ROS2 FEATURE SURVEY

• Algorithms
 Diagnostics
 Controllers
 State

Estimation
 SLAM
 Navigation
 Perception
 Manipulation

• Drivers
 CAN
 GPS
 IMU
 LiDAR
 Cameras

• Tools
 Command

Line
 RQt
 Rviz
 Gazebo

43DISTRIBUTION A. See first slide

COMMAND LINE

• ROS1 commands such as roslaunch, rosrun, etc. have been
consolidated under a single “ros2” command with these
subcommand functions:
– Run Launch Files
– Run Executables
– List and Describe Nodes
– List, Describe, Set, and Get Parameters
– Publish, Subscribe, and Describe Topics
– Execute and Describe Services
– Play and Record Bags

• ROS2 CLI “Cheat Sheet”:
https://github.com/ubuntu-robotics/ros2_cheats_sheet

44DISTRIBUTION A. See first slide

RQT

• RQt is a plugin-based GUI framework for ROS tools
• About 2/3 of the ROS1 RQt Plugins have been ported to ROS2
• The following RQt Plugins are not yet supported in ROS2:

Plugin Description
Package Graph Displays graphs of ROS package dependencies

Bag Record, play, and inspect bag files

Web Provides a panel to access web URLs

Diagnostics Viewer Display raw diagnostics

Logger Levels Dynamically set verbosity on a per logger basis

Runtime Monitor Display current, categorized diagnostic status

Navigation Viewer Displays maps and plans

Pose View Visualize the orientation described by a pose topic

TF Tree Visualize the transform tree of a robot

45DISTRIBUTION A. See first slide

RVIZ

• RViz is a GUI tool for visualizing data published by ROS nodes

• Almost all default display plugins have been ported to ROS2

• Only DepthCloud and Effort are missing, do not seem to be widely
used.

• Note that point clouds are visualized in RViz using the PointCloud
plugin

46DISTRIBUTION A. See first slide

GAZEBO

• Gazebo is the standard physics simulation environment and
visualizer for ROS.

• Work was completed over the summer of 2019 to port the bulk of
Gazebo to ROS2

• Ignition Gazebo is an updated and restructured version of the
classic Gazebo software:
– Features improved performance and rendering capabilities
– Uses its own middleware layer, called Ignition Transport, but a ROS2-to-

Ignition bridge is available

47DISTRIBUTION A. See first slide

Q&A

	Slide Number 1
	AGENDA
	Slide Number 3
	Slide Number 4
	Key Takeaways
	SUMMARY findings
	MIGRATION - PORTING FROM ROS1 to ROS2
	MIGRATION - ROS1 Bridge
	TRAINING
	CONCLUSIONS - FEATURE GAPS
	CONCLUSIONS - QUALITY
	CONCLUSIONS - COMPLIANCE
	RECOMMENDATIONS
	Slide Number 14
	bUILD SYSTEM
	Slide Number 16
	NODES
	Nodes - LIFECYCLE MANAGEMENT
	NODES - LIFECYCLE STATE DIAGRAM
	COMMUNICATION
	MIDDLEWARE
	MIDDLEWARE (continued)
	middleware�SUPPORTED DDS IMPLEMENTATIONS
	COMPONENTS
	LAUNCH
	PARAMETERS
	LOGGING
	Other/MISCELLANEOUS
	Slide Number 29
	DIAGNOSTICS
	CONTROLLERS
	STATE ESTIMATION & SLAM
	NAVIGATION
	PERCEPTION
	MANIPULATION
	Slide Number 36
	CAN
	GPS
	IMU
	LiDAR
	CAMERAS
	Slide Number 42
	COMMAND LINE
	RQT
	RViz
	GAZEBO
	Slide Number 47

